cristiano.aguzzi@unibo.it

Outline

Background
New frontier

Architecture
o Qverview

Building blocks
° Json-Ld
> Thing descriptor
° Interaction patterns
o Scripting Api

Servient

Discover Things
> Thing Directory
o CoRE resource directory

WhoAml

Cristiano Aguzzi

Web of Things and Semantic Technologies

e PhD student in Structural&Enviromental
Health Monitoring and Managment
(Computer Science)

e Graduated in Computer Engineering from
2017

@ cristiano.aguzzi@unibo.it @ cris.dev()

‘ @relucri

Backgrouna

WEB OF THINGS

Beginnings

A Web of Things Application Architecture - Integrating
the Real-World into the Web (2011):

The ultimate goal of these initiatives can be
summarized as trying to create a loosely coupled
ecosystem of services for smart things. That is, a

widely distributed platform in which the services 'E);’I_'I“Zi:i?c“hec*“i“a’d

provided by smart z.fhmgs can be easily composed to ¢ der of Evrything
create new applications and use-cases

Beginnings

= Inspired by Web Services

= RESTFul Web architecture
= Resource Oriented Architecture

= HTTP as the only application protocol
= Resources descripted with JSON

= The minimal Thing is a client that must

Dominique Guinard
implement: ETH Zurich

Founder of Evrything

= |EEE 802 (Ethernet) / IEEE 802.11 (WiFi)
= Web server supporting HTTP 1.1

Reference

site.unibo.it/wot/en/agenda/meeting

vs.inf.ethz.ch/publ/papers/dguinard-awebof-2011.pdf

New frontier

WEB OF THINGS

WoT @ W3C WG

The Web of Things seeks to counter the fragmentation of the loT
through standard complementing building blocks (e.g., metadata and
APIs) that enable easy integration across loT platforms and application

domains

22 ,
g SIEMENS

o)
intel. 5 SHETE Panasonic g’é
ERICSSON HUAWEI

Enable easy integration

Guarantee interoperability with machine understandable

metadata

> Description of the data and interaction models
c Communications requirements

o Security requirements

Everything

Client

Web of Things

Thing definition

An abstraction of a physical or virtual entity whose metadata
and interfaces are described by a WoT Thing Description.

This entity can be:

* an existing device

* alogical component of a device
* alocal hardware component

* |ogical entity (e.g., location)

Everything that has a Thing Description is a Thing

Architecture

WEB OF THINGS

Overview

Cloud

Gateway

Control Agent
Proxy Thing
WoT Scripting AP

Interaction Model
Proxy Thing

WoT Binding Templates

(—

Remote Access Interaction Model
and Synchronization S

WaT Scripting API

Integration and

i
pp Scrip Orchestration

WoT Scripting AP
Interaction Model

WoT Binding Templates '4

App Seript

Classi
Seamless Firr:\sf::re WaoT Scripting API
Web Integration Interaction Model Interaction Model

Protocol Direct - WoT Binding Templates Complement
Thing-to-Thing Existing Devices

Interaction
\ N \

Proxy Thing

WoT Scripting API

Control Agent

Interaction Model

Proxy Thin
WoT Binding Templates Y e

WoT Scripting API
Re mote Access Interaction Model
and Synchronization WoTBinding Templates

Integration and
Orchestration

< <

App Script

WoT Scripting API

Classic
Firmware

Interaction Model Interaction Model

Protocol Direct WoT Binding Templates complement
Thing-to-Thing ~ Existing Devices
Interaction

Gateway

Virtual Thing
. Control Agent

: Proxy Thing '

WoT Scripting API
Remote Access Interaction Model
and Synchronization WoT Binding Templates

Integration and
Orchestration

<

App Script

WoT Scripting API

Interaction Model

Cloud

Proxy Thing

Control Agent

Proxy Thing

WoT Scripting API

Interaction Model

WoT Binding Templates

C—)
Remote Access
and Synchronization

App Script

WoT Scripting API
Interaction Model

WoT Binding Templates

App Script

Cloud

Gateway

WoT Scripting API

Interaction Model
Proxy Thing

WoT Binding Templates

WoT Scripting API
Remote Access Interaction Model
and SVnChI'OI‘Iization WoT Binding Templates

Integration

|
Orchestrat

WoT Scripting API
Interaction Model

WoT Binding Templates

<

<

¥4
N\

App Script

Classic
Seamless Firmware WoT Scripting API
Web |nt9grat|0n Interaction Model Interaction Model

Protocol Direct . WaoaT Binding Templates comple me nt
Thing-to-Thing ~ Existing Devices

Interaction | —— '
et \n‘

Building blocks

Thing descriptor
Binding templates
Scripting API

Json-LD

RDF is very powerful but hard to handle
JSON has been extended to fully support Linked Data: JSON-LD

JSON-LD (JSON for Linked Data) is fully compatible with JSON
(i.e. every JSON-LD document is a valid JSON one)

Json-LD

Introduces new reserved keywords that can be used to “decorate”
JSON documents:

° @type
° @id
* @context

JSON-LD: Basic example

{
"@context":"http://schema.org/",

"@id":"http://nstFabioViola",
"name":"Fabio Viola"

}

<http://ns#tFabioViola> <http://schema.org/name> "Fabio Viola" .

Further details

site.unibo.it/wot/en/agenda/internal-meeting-1

=3}
e

json-ld.org

Thing Descriptor

The Thing Descriptor is the core of WoT
architecture. It's the entry point of a thing and it
consist in a collection of semantic metadata that
describe its interaction patterns.

Furthermore it can have semantic annotations to
make data models machine understandable and
features for web linking to express relation among
Things

Its default serialization is JSON-LD

Interaction patterns

A WoT client can interact with a Thing using this three interaction
patterns:

="Properties: A thing may have a set of properties (Read, Write)
=Actions: A client can request some processing to a Thing

="Events: A Thing can fire events and clients may subscribe to them

Interoperability

The WoT Thing Description fosters interoperability in two ways: First, and
foremost, TDs enable machine-to-machine communication in the Web of
Things. Second, TDs can serve as a common, uniform format for

developers to document and retrieve all details necessary to access loT
devices and make use of their data.

Name: MyLamp

Status
Location
Vendor
Consumption

OverHeating

Properties Actions Events

In details

"@context":[
"https://w3c.github.io/wot/w3c-wot-td-
context.jsonld"

]l'@ty.pell :[
"Thing"

"name":"MyLampThing",
"interaction":|

=
}

Interaction - property

{
“interaction":[

{
"'@Itype":[)
Property Description of the data inside this property. Schema

"name":”Status", can be the description of complex objects

"schemlg "":{

"type":"string"

. " Identify how to access this property. (eg. Protocol,
writable":false .

"observable":true, port, host ...) — Protocol Binding data

"form":[... |

Interaction - Action

n,n

"type":"object",
"field":[

"interaction":[{

{ "name":"brightness",
"@type":["schema":{
"Action" "type":"integer",
], "@type":[
"name":“Dim", | "iot:DimmerData"
inputSchema": "minimum™o0,
"maximum":255
b }
"form":[...] 1,
} "required":[
"brightness"
]
) }

Interaction - Event

{
"@type":[
"Event",
"iot:TemperatureExceed"
1,
"name":“OverHeating",
"schema":{
"typeI'Z"String"
7
"form":[...]

}

Further details

w3c.github.io/wot-thing-description

Binding templates

Problem: enable interactions with a myriad of
different loT Platforms

Solution: define multiple vocabularies (Binding
Template) to describe communication between
Things and provide extension points in the Thing

Descriptor.

Binding templates

Web
with JSON
over HTTP

using “nosec”

LWM2M Web
with SenML with CBOR
over CoAP over CoAP
using DTLS u/ COSE+CWT

OCF oneM2M
with CBOR with JSON
over CoAP over MQTT
using DTLS using TLS

Thing Descriptions

“loT Platform” x “Transfer Protocol” x “Media Type” x “Security”

Protocol Bindings

CoAP JSON CBOR OAuth (D)TLS

| Binding
Templates

| Binding
Instances

Binding
- Implemen-
tations

Protocol binding

A protocol binding enable the communication with a
particular loT platform or protocol or software stack.

It is similar to a driver for a digital device and uses a
binding instance declared at interaction pattern level
for configuration.

Wot Interface - verbs

ReadProperty
WriteProperty
ObserveProperty
InvokeAction
SubscribeEvent

UnsubscribeEvent

Td extension: Form element

The "form" element contains the URI pointing to an instance of the
interaction and descriptions of the protocol settings and options expected to
be used when between the client and server for the interaction

In practice

"interaction":[

{
"name":"Status",
"@type":[
"Property"
], "schema" :{...}
"writable":false,
"observable":false,
"form":[
{ The property Switch State can be
"href":"/example/light/currentswitch”,| accessed with HTTP using

"mediatype":"application/json" /example /light/currentswitch path.

}
]

More complex

"form":[

{

"href":"/example/light/currentswitch",

Interaction resource URI

"mediaType":"application/json",
"rel":[
"readProperty"

],
"http:methodName":"http:get"

"href":"/example/light/currentswitch",

"mediaType":"application/json",
"rel":[
"writeProperty"

],
"http:methodName":"http:post"

"href":"maqtt://example.com/example/light/currentswitch",

"rel":|
"observeProperty"

]I

"mqgtt:methodName":"mqtt:subscribe"

More complex

Interaction resource URI

"form":[

{

"href":"/example/light/currentswitch",
"mediaType":"application/json",
"rel":[

"readProperty"

WoT Interface Verb

1,
"http:methodName":"http:get"
2
{

"href":"/example/light/currentswitch",
"mediaType":"application/json",
"rel":[

"writeProperty"

1,
"http:methodName":"http:post"
2
{

"href":"mqtt://example.com/example/light/currentswitch",
"I’el":[
"observeProperty"

]’

"mqtt:methodName":"mqtt:subscribe"
}
]

More complex

"form":[

{

"href":"/example/light/currentswitch",

"mediaType":"application/json",

"rel":[
"readProperty"
Interaction resource URI) - \
http:methodName":"http:get
}’
{

WoT Interface Verb "href":"/example/light/currentswitch",
"mediaType":"application/json",
||re|||:[

. fe . . "writeP "

Specific vocabulary configuration | rerroperty

"http:methodName":"http:post"

}I

{
"href":"mqtt://example.com/example/light/currentswitch",
"re|":[

"observeProperty"

],

"mqtt:methodName":"mqtt:subscribe"

https://w3c.github.io/wot-binding-templates/#form-vocabulary

}
]

Reference

w3c.github.io/wot-binding-templates/

Scripting AP

The WoT Scripting APl enables having a runtime
system for loT applications.

* Improve productivity
* Reduce integration costs

* Enable portability for application modules

Scripting AP

Application Script

WoT API
Discover
Produce
Consume

ExposeThing API ConsumeThing
Start InvokeAction
Stop ReadProperty
SetActionHandler WriteProperty

Wot AP]

interface WoT{
Observable<ConsumedThing> discover(optional ThingFilter filter);
Promise<ThingDescription> fetch(USVString url);
ConsumedThing consume(ThingDescription td);
ExposedThing produce(ThingModel model);
;
typedef USVString ThingDescription;
typedef (ThingTemplate or ThingDescription) ThingModel;

ThingFilter

dictionary ThingFilter {
DiscoveryMethod method = "any";
USVString url;
USVString query;
sequence<Dictionary> constraints;

Example: Local discovery

let subscription = wot.discover({
method: "nearby",
constraints: [{ protocol: "BLE-4.2" }, { protocol: "NFC"}]
}).subscribe(
thing => { console.log("Found nearby Thing " + thing.name); },
error => { console.log("Discovery error: " + error.message); },
() => { console.log("Discovery finished successfully");

H);

ConsumeThing API

interface ConsumedThing {
readonly attribute DOMString name;
ThingDescription getThingDescription();
Promise<any> invokeAction(DOMString name, any parameters);
Promise<void> writeProperty(DOMString name, any value);
Promise<any> readProperty(DOMString name);
Observable onEvent(DOMString name);
Observable onPropertyChange(DOMString name);
Observable onTDChange();

ExposeThing AP

ExposedThing implements ConsumedThing;

interface ExposedThing {

// define how to expose and run the Thing
Promise<void> start();
Promise<void> stop();
Promise<void> register(optional USVString directory);
Promise<void> unregister(optional USVString directory);
Promise<void> emitEvent(DOMString eventName, any payload

);

// define Thing Description modifiers

ExposedThing addProperty(ThingProperty property);

ExposedThing removeProperty(DOMString name);

ExposedThing addAction(ThingAction action);

ExposedThing removeAction(DOMString name);

ExposedThing addEvent(ThingEvent event);

ExposedThing removeEvent(DOMString name);

// define request handlers

ExposedThing setActionHandler(ActionHandler action, optional DOMString actionName);

ExposedThing setPropertyReadHandler(PropertyReadHandler readHandler, optional DOMString propertyName);
ExposedThing setPropertyWriteHandler(PropertyWriteHandler writeHandler, optional DOMString propertyName); };
callback ActionHandler = Promise<any> (any parameters);

callback PropertyReadHandler = Promise<any> ();

callback PropertyWriteHandler = Promise<void> (any value);

Codel

GITHUB.COM/THINGWEB/NODE-WOT

Servient

The core node of the WoT architecture is the Servient

A Servient is a software stack that implements the WoT
building blocks. Servients can host and expose Things

and/or consume Things. Thus, Servients can perform in
both the server and client roles.

Servient

e Application: Thing business logic;
implement or using a script or in the

firmware ‘7 Application Script

* WoT Scripting API: contract between WoT Scripting AP

applications and the runtime system WoT Runtime
. Description
(Optional Component)

. . . Protocol Bindings System API
* WoT Runtime: contains Thing and . ‘
.) . . HTTP(S) CoAP(S) Local Proprietary
interaction model abstractions. (Optional Binding | [
MQTT cation

Component) Templates

* Protocol Bindings: implementations of
Binding templates, the actual network
interface between things

* System API: things can access local

hardware or system services. (out of scope
of WoT standardization)

Minimal servient

Application Script

WoT Scripting API

Browser + Library

Protocol Bindings

HTTP(S) (S)RTP

FTP

Thing
Description

Firmware

Protocol Binding

CoAP(S)

Driver API

Local
Hardware

Discover things

Things capabilities can be discovered throughout their thing descriptor.

The discovering process can search different levels:

* Local: Thing defined in the same device (no network operation)

* Nearby: Spatial locality discovering. A device is “near” if it’s in range of a wireless protocol.
(Bluethoot, NFC ...)

* Directory: use a remote service to discover Things.
* Broadcast: open ended discovery based on sending a request to a broadcast address

* Other: Proprietary discovering protocol

Thing directory

A thing directory can collect TDs and offer services like a
SPARQL endpoint to search for a particular Thing

Must be aligned with the CoRE Resource Directory
specification?

May provide Web interface for lookups, usually including a
SPARQL endpoint for semantic queries

[1] https://tools.ietf.org/html/draft-ietf-core-resource-directory-11

CoRE Resource Directory

Designed to use WeblLinking discovering process in Constrained RESTful
Environments

Stores links in the CoRE link format wich can be inserted in Groups

RESTful interface by definition:
* Registration
* Registration updates
* Removal
* Automatic removal after a given lifetime

Lookup based on link format

RFC defines also common scenarios and mechanisms to discover thing
directory itself

Discover things - SEPA

SPARQL UPDATE

CoRE Resolver SEPA Engine

[
»

SPARQL SE 1.0

HTTP GET

CoRE Directory Interface

SEPA Thing Directory

Register CoRE Link

Cocktail protocol template

Create a protocol template to enable thing to thing
interaction trought SEPA engine

"form":[

"href":“sepahost:3456",
"mediatype":"application/json"

"sepa:jsap" : "sepahost:3456/thing_interaction.jsap"
"sepa:update" : "UPDATE_PROPERTY_VALUE"

Thank you for
your attention

cristiano.aguzzi@unibo.it

